Medical Claims: FGF-23

References

1. Conroy M, Brodbelt DC, O'Neill D, Chang YM, Elliott J. Chronic kidney disease in cats attending primary care practice in the UK: a VetCompass study. Vet Rec. 2019;184(17):526. doi:10.1136/vr.105100

2. Marino CL, Lascelles BD, Vaden SL, Gruen ME, Marks SL. Prevalence and classification of chronic kidney disease in cats randomly selected from four age groups and in cats recruited for degenerative joint disease studies. J Feline Med Surg. 2014;16(6):465–472. doi:10.1177/1098612X13511446

3. Sparkes AH, Caney S, Chalhoub S, et al. ISFM consensus guidelines on the diagnosis and management of feline chronic kidney disease. J Feline Med Surg. 2016;18(3):219–239. doi:10.1177/1098612X16631234

4. White JD, Malik R, Norris JM. Feline chronic kidney disease: can we move from treatment to prevention? Vet J. 2011;190(3):317–322. doi:10.1016/j.tvjl.2010.12.011

5. Slatopolsky E. The intact nephron hypothesis: the concept and its implications for phosphate management in CKD-related mineral and bone disorder. Kidney Int Suppl. 2011;79(121):S3–S8. doi:10.1038/ki.2011.23

6. Moe S, Drüeke T, Cunningham J, et al. Definition, evaluation, and classification of renal osteodystrophy: a position statement from Kidney Disease: Improving Global Outcomes (KDIGO). Kidney Int. 2006;69(11):1945–1953. doi:10.1038/sj.ki.5000414

7. Finch NC, Geddes RF, Syme HM, Elliott J. Fibroblast growth factor 23 (FGF-23) concentrations in cats with early nonazotemic chronic kidney disease (CKD) and in healthy geriatric cats. J Vet Intern Med. 2013;27(2):227–233. doi:10.1111/jvim.12036

8. Geddes RF, Elliott J, Syme HM. Relationship between plasma fibroblast growth factor-23 concentration and survival time in cats with chronic kidney disease. J Vet Intern Med. 2015;29(6):1494–1501. doi:10.1111/jvim.13625

9. Geddes RF, Finch NC, Elliott J, Syme HM. Fibroblast growth factor 23 in feline chronic kidney disease. J Vet Intern Med. 2013;27(2):234–241. doi:10.1111/jvim.12044

10. Seiler S, Heine GH, Fliser D. Clinical relevance of FGF-23 in chronic kidney disease. Kidney Int Suppl. 2009;76(114):S34–S42. doi:10.1038/ki.2009.405

11. Liao YL, Chou CC, Lee YJ. The association of indoxyl sulfate with fibroblast growth factor-23 in cats with chronic kidney disease. J Vet Intern Med. 2019;33(2):686–693. doi:10.1111/jvim.15457

12. Lin J, Lin L, Chen S, Yu L, Chen S, Xia Z. Serum fibroblast growth factor 23 (FGF-23): associations with hyperphosphatemia and clinical staging of feline chronic kidney disease. J Vet Diagn Invest. 2021;33(2):288–293. doi:10.1177/1040638720985563

13. Nakata J, Nakahari A, Kato Y, et al. Molecular cloning and expression analysis of feline α1-microglobulin. Vet Immunol Immunopathol. 2011;139(1):79–82. doi:10.1016/j.vetimm.2010.08.002 14.

14. Elliott J, Rawlings JM, Markwell PJ, Barber PJ. Survival of cats with naturally occurring chronic renal failure: effect of dietary management. J Small Anim Pract. 2000;41(6):235–242. doi:10.1111/j.1748-5827.2000.tb03932.x

15. Geddes RF, Elliott J, Syme HM. The effect of feeding a renal diet on plasma fibroblast growth factor 23 concentrations in cats with stable azotemic chronic kidney disease. J Vet Intern Med. 2013;27(6):1354–1361. doi:10.1111/jvim.12187

16. Chang YH, Wu CH, Chou NK, et al. High plasma C-terminal FGF-23 levels predict poor outcomes in patients with chronic kidney disease superimposed with acute kidney injury. Ther Adv Chronic Dis. 2020;11:2040622320964161. doi:10.1177/2040622320964161

17. Harjes LM, Parker VJ, Dembek K, et al. Fibroblast growth factor-23 concentration in dogs with chronic kidney disease. J Vet Intern Med. 2017;31(3):784–790. doi:10.1111/jvim.14707

18. Miyakawa H, Hsu HH, Ogawa M, Akabane R, Miyagawa Y, Takemura N. Association between serum fibroblast growth factor-23 concentration and development of hyperphosphatemia in normophosphatemic dogs with chronic kidney disease. J Vet Intern Med. 2021;35(5):2296–2305. doi:10.1111/jvim.16237

19. Rudinsky AJ, Harjes LM, Byron J, et al. Factors associated with survival in dogs with chronic kidney disease. J Vet Intern Med. 2018;32(6):1977–1982. doi:10.1111/jvim.15322

20. International Renal Interest Society. Guidelines: IRIS staging of CKD. Available from: www.iris-kidney.com/guidelines/staging.html. Accessed August 29, 2022.

21. Foster JD. Update on mineral and bone disorders in chronic kidney disease. Vet Clin North Am Small Anim Pract. 2016;46(6):1131–1149. doi:10.1016/j.cvsm.2016.06.003

22. Sargent HJ, Jepson RE, Chang YM, Biourge VC, Bijsmans ES, Elliott J. Fibroblast growth factor 23 and symmetric dimethylarginine concentrations in geriatric cats. J Vet Intern Med. 2019;33(6):2657–2664. doi:10.1111/jvim.15590

23. Drüeke TB. Hyperparathyroidism in chronic kidney disease. In: Feingold KR, Anawalt B, Boyce A, et al, eds. Endotext [online textbook]. MDText.com, Inc. Updated October 18, 2021. Accessed August 29, 2022. Available from: www.ncbi.nlm.nih.gov/books/NBK278975

24. Gattineni J, Baum M. Regulation of phosphate transport by fibroblast growth factor 23 (FGF23): implications for disorders of phosphate metabolism. Pediatr Nephrol. 2010;25(4):591–601. doi:10.1007/s00467-009-1273-z

25. Marks J, Debnam ES, Unwin RJ. Phosphate homeostasis and the renal-gastrointestinal axis. Am J Physiol Renal Physiol. 2010;299(2):F285–F296. doi:10.1152/ajprenal.00508.2009

26. Ramon I, Kleynen P, Body JJ, Karmali R. Fibroblast growth factor 23 and its role in phosphate homeostasis. Eur J Endocrinol. 2010;162(1):1–10. doi:10.1530/EJE-09-0597

27. Isakova T, Wahl P, Vargas GS, et al. Fibroblast growth factor 23 is elevated before parathyroid hormone and phosphate in chronic kidney disease. Published correction appears in Kidney Int. 2012;82(4):498. Kidney Int. 2011;79(12):1370–1378. doi:10.1038/ki.2011.47

28. Silver J, Naveh-Many T. FGF-23 and secondary hyperparathyroidism in chronic kidney disease. Nat Rev Nephrol. 2013;9(11): 641–649. doi:10.1038/nrneph.2013.147

29. Laflamme D, Backus R, Brown S, et al. A review of phosphorus homeostasis and the impact of different types and amounts of dietary phosphate on metabolism and renal health in cats. J Vet Intern Med. 2020;34(6):2187–2196. doi:10.1111/jvim.15961

30. Williams TL, Elliott J, Syme HM. Calcium and phosphate homeostasis in hyperthyroid cats: associations with development of azotaemia and survival time. J Small Anim Pract. 2012;53(10):561–571. doi:10.1111/j.1748-5827.2012.01253.x

31. Edmonston D, Wolf M. FGF23 at the crossroads of phosphate, iron economy and erythropoiesis. Nat Rev Nephrol. 2020;16(1):7–19. doi:10.1038/s41581-019-0189-5

32. Song T, Fu Y, Wang Y, et al. FGF-23 correlates with endocrine and metabolism dysregulation, worse cardiac and renal function, inflammation level, stenosis degree, and independently predicts in-stent restenosis risk in coronary heart disease patients underwent drug-eluting-stent PCI. BMC Cardiovasc Disord. 2021;21(1):24. doi:10.1186/s12872-020-01839-w

33. Lund EM, Armstrong PJ, Kirk CA, et al. Health status and population characteristics of dogs and cats examined at private veterinary practices in the United States. J Am Vet Med A. 1999; 214:1336-1341

34. O'Neill DG, Church DB, McGreevy PD, et al. Prevalence of disorders recorded in cats attending primary-care veterinary practices in England. Vet J. 2014;202:286-291.

35. Jepson RE, Brodbelt D, Vallance C, Syme HM, Elliott J. Evaluation of predictors of the development of azotemia in cats. J Vet Intern Med. 2009;23:806-813.

Don’t just keep up. Stay ahead. Sign up for the IDEXX Education Newsletter.

Fill out the form to receive new Vetiverse articles, updates on upcoming live events, and exciting on-demand education content.